Nuclear Magnetic Resonance With No Magnets
With Ledbetter in the lead, the Budker/Pines collaboration built a magnetometer specifically designed to detect J-coupling at zero magnetic field. Thomas Theis, a graduate student in the Pines group, supplied the parahydrogen and the chemical expertise to take advantage of parahydrogen-induced polarization. Beginning with styrene, a simple hydrocarbon, they measured J-coupling on a series of hydrocarbon derivatives including hexane and hexene, phenylpropene, and dimethyl maleate, important constituents of plastics, petroleum products, even perfumes.
“The first step is to introduce the parahydrogen,” Budker says. “The top of the set-up is a test tube containing the sample solution, with a tube down to the bottom through which the parahydrogen is bubbled.” In the case of styrene, the parahydrogen was taken up to produce ethylbenzene, a specific arrangement of eight carbon atoms and 10 hydrogen atoms.
Immediately below the test tube sits the magnetometer’s alkali vapor cell, a device smaller than a fingernail, microfabricated by Svenja Knappe and John Kitching of the National Institute of Standards and Technology. The vapor cell, which sits on top of a heater, contains rubidium and nitrogen gas through which pump and probe laser beams cross at right angles. The mechanism is surrounded by cylinders of “mu metal,” a nickel-iron alloy that acts as a shield against external magnetic fields, including Earth’s.
Ledbetter’s measurements produced signatures in the spectra which unmistakably identified chemical species and exactly where the polarized protons had been taken up. When styrene was hydrogenated to form ethylbenzene, for example, two atoms from a parahydrogen molecule bound to different atoms of carbon-13 (a scarce but naturally occurring isotope whose nucleus has spin, unlike more abundant carbon-12).
J-coupling signatures are completely different for otherwise identical molecules in which carbon-13 atoms reside in different locations. All of this is seen directly in the results. Says Budker, “When Micah goes into the laboratory, J-coupling is king.”
Of the present football-sized magnetometer and its lasers, Ledbetter says, “We’re already working on a much smaller version of the magnetometer that will be easy to carry into the field.”
Although experiments to date have been performed on molecules that are easily hydrogenated, hyperpolarization with parahydrogen can also be extended to other kinds of molecules. Budker says, “We’re just beginning to develop zero-field NMR, and it’s still too early to say how well we’re going to be able to compete with high-field NMR. But we’ve already shown that we can get clear, highly specific spectra, with a device that has ready potential for doing low-cost, portable chemical analysis.”
More information
“Parahydrogen-enhanced zero-field nuclear magnetic resonance,” by Thomas Theis, Paul Ganssle, Gwendal Kervern, Svenja Knappe, John Kitching, Micah Ledbetter, Dmitry Budker, and Alexander Pines, appears in Nature Physics and is available online at http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys1986.html. Theis, Ganssle, and Pines are with Berkeley Lab’s Materials Sciences Division and the UC Berkeley Department of Chemistry, as was Kervern, now at the University of Lyon. Knappe and Kitching are with the National Institute of Standards and Technology. Ledbetter is with UC Berkeley’s Department of Physics, as is Budker, who is also a member of Berkeley Lab’s Nuclear Science Division. This work was supported by the National Science Foundation and DOE’s Office of Science.