A less painful colonoscopy
Colonoscopy is regarded as the most thorough way to screen for colon cancer but the potentially life-saving procedure can also be painful. Scientists and engineers are continually researching new methods of screening to reduce patient discomfort while also ensuring the accuracy of the exam. Researchers at Tufts University’s School of Engineering led by Associate Professor of Mechanical Engineering Caroline G.L. Cao, Ph.D., have developed a device that could potentially do both.
Tufts endoscopic fiber optic shape tracker (EFOST) technology is a possible solution to the problem that occurs when the endoscope is inserted into the colon during routine screening. As an endoscopist navigates the scope through the bends and turns in the colon, its tip can impinge against the colon wall.
When this happens, the tip becomes stationary and is unable to move forward. As the physician applies more pressure, a loop can form in the length of scope behind the tip. Because the traditional endoscope provides only a frontal view during the procedure, the doctor cannot see the loop, much less easily maneuver the scope to remove it. Not surprisingly, looping can be a major source of pain during a colonoscopy.
But by outfitting an endoscope with fiber optic bend sensors and digital electronics that display its position and shape on a video monitor, the Tufts engineers have built a system that could serve as a visual navigation tool, says Cao
“Doctors will have a way to see in real-time how the scope is moving inside the patient’s body,” says Cao. “If the scope begins to loop, they will see it instantaneously and then be able to make adjustments to straighten it out.”
Bend Sensors to Create a Visual Image
Cao and Mechanical Engineering Research Associate Professor Peter Y. Wong, Ph.D, described their concept in a paper titled “Localized Active-Cladding Optical Fiber Bend Sensor” in June 2010 in the journal Optical Engineering.
Using a prototype, the Tufts engineers embedded quantum dots - nano-sized crystals of semiconductor material - circumferentially at intervals along the length of an optical fiber. The researchers stretched the fiber around a metal cylinder to create a bending effect. They then injected a laser light beam into the fiber’s inner core from one end.
The fiber’s core released light as it is bent. This activated the quantum dots. Instantly, the dots reemitted light signals of varying intensity to a spectrometer. With this data, the researchers were able to measure the degree of curvature in the fiber. From the position of the activated dots, the researchers were also able to calculate the direction of the bend. “The greater the bend, the more intense the light emissions,” says Cao.
In a separate experiment, the team used an inanimate model colon made of polyurethane foam.. They inserted the modified fiber inside an endoscope and then threaded the device into the model. The researchers were able to produce a video image by sending the data through a digital processor which created a real-time image of the scope in the model colon.
Cao notes, “Physicians can use the image on the monitor to guide them. They’ll know exactly where the end of the point is, as well as the shape of the scope inside the colon.”
Colorectal cancer is the third leading cause of cancer-related deaths in the United States, with 102,900 new cases diagnosed in 2010, according to most recent estimates from the American Cancer Society.
Colon cancer has a high cure rate provided it is detected early. Most men and women are advised to undergo periodic colonoscopies beginning at age 50.
The commercialization of EFOST is being managed by Tufts University’s Office for Technology Licensing and Industrial Collaboration. There are currently patents s pending in the USA, Canada, Europe, Japan and Australia. The next step, Cao says, is to acquire funding to launch a start-up company and then move on to further development of the technology, including eventual clinical trials.
###
This work was supported by a Broad Medical Research Grant from the Eli and Edythe L. Broad Foundation. The pending patents are jointly owned by Tufts University, University of Toronto and University Health Network Toronto.
Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university’s schools is widely encouraged.
Tufts University School of Engineering is dedicated to educating the technological leaders of tomorrow. Located on Tufts’ Medford/Somerville campus, the School of Engineering offers a rigorous engineering education in an environment characterized by the best blending of a liberal arts college atmosphere with the intellectual and technological resources of a world-class research university. Close collaboration with the School of Arts and Sciences and the university’s extraordinary collection of excellent professional schools creates a wealth of educational and research opportunities. The School of Engineering’s primary goal is to educate engineers committed to the innovative and ethical application of technology in the solution of societal problems. It also seeks to be a leader among peer institutions in targeted areas of interdisciplinary research and education that impact the well-being and sustainability of society, including bioengineering, sustainability and innovation in engineering education.
###
Contact: Alex Reid
.(JavaScript must be enabled to view this email address)
617-627-4173
Tufts University