Nanoparticles may enhance cancer therapy

“His enthusiasm for science and willingness to further explore the potential of carbon nanoparticles to treat cancer patients was apparent right away, and we launched a collaborative effort that has been quite productive,” he said.

Myers is pleased with what the team has accomplished so far. “This collaborative work has ‘proved the principle’ that carbon nanoparticles can be used to non-covalently link a chemotherapeutic drug with a targeting antibody that can deliver the drug specifically to a cancer cell,” he said. “This principle could be used to deliver other drugs to other types of cells through specific targeting of cell surface receptors as a method of increasing the therapeutic ratio.

“Though I am not an expert in these other areas, this could potentially have applications in infectious diseases, neurologic disorders and cardiovascular illnesses,” he said.

Tour sees potential for clinical uses of PEG-HCCs for brain cancer and traumatic brain injuries as well as chemotherapy, but acknowledged the introduction of such drugs for human use is a long way off. “To get a drug through all the different phases, including trials, typically takes 12 to 14 years and about $1.25 billion,” he said. “That can sometimes be expedited through experimental trials with patients who have no other options, but it’s still a long and expensive haul.”

Still, he said the new work is a strong step in the right direction. “This paper is the highlight of six years of research,” he said. “It all came together. This is the crescendo, right here.”

###

The paper’s lead authors are Daisuke Sano, a former postdoctoral fellow at MD Anderson, now at Yokohama City University Graduate School of Medicine in Japan, and Jacob Berlin, a researcher in Tour’s Rice lab and now a professor at City of Hope Hospital, Duarte, Calif. Co-authors are Rice alumnus Tam Pham and graduate student Daniela Marcano; and Ge Zhou, an assistant professor in the Department of Head and Neck Surgery, David Valdecanas, laboratory coordinator in experimental radiation oncology, and Luka Milas, professor and chair of the Department of Experimental Radiation Oncology, all at MD Anderson.

The research was supported by The Alliance for NanoHealth through a Department of Defense subcontract from the University of Texas Health Science Center at Houston; the Mission Connect Mild Traumatic Brain Injury Consortium, also funded by the Department of Defense; the Nanoscale Science and Engineering Initiative of the National Science Foundation; the MD Anderson Cancer Center PANTHEON Program; a National Institutes of Health Cancer Center Support Grant; and an MD Anderson Cancer Center Support Grant.

###

In the new study by Rice University and MD Anderson, mice with dual subcutaneous tumors – the left one EGFR-negative, the right one EGFR-positive – were treated with the new Cet/PTX/PEG-HCC mixture, a carbon nanoparticle-based chemotherapeutic drug tuned to target EGFR-positive tumors. Treatment over 30 days proved highly effective in killing the right-side tumors, underscoring the efficacy of the targeted approach. (Credit: E. Loïc Samuel/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance.

###

David Ruth
.(JavaScript must be enabled to view this email address)
713-348-6327
Rice University

Page 2 of 21 2

Provided by ArmMed Media