Xenotransplantation as a therapy for type 1 diabetes

Type 1 diabetes is caused by autoimmune destruction of the insulin-producing beta cells. Over 250,000 patients suffer from type 1 diabetes in Germany who are treated with daily insulin injections to maintain glucose metabolism. Replacement of the destroyed beta cells by transplantation of either a complete pancreas organ or isolated human beta cells is the only effective way to cure the disease. However, due to the shortage of organ donors this method can be offered to only few patients. As an alternative approach researchers are exploring xenotransplantation, i.e. transplantation of the organ from another species. The most obvious barrier in xenotransplantation is the strong immune rejection against the transplant. A research team led by LMU’s Professor Eckhard Wolf and Professor Jochen Seissler has now generated a genetically modified strain of pigs whose beta-cells restores glucose homeostasis and inhibit human-anti-pig immune reaction. So far, the efficacy of this approach has been demonstrated only in an experimental mouse model. “Whether the strategy will work in humans remains to be demonstrated,” says Professor Wolf. “Nevertheless, we consider the approach as very promising and plan to test it further in other settings.”

Type 1 diabetes is caused by an autoimmune reaction which ultimately leads to the destruction of the insulin-producing cells in the pancreas, and usually becomes manifest during adolescence. Thereafter, insulin must be administered by regular insulin injections. Since insulin therapy cannot reproduce the complex pattern of physiologically controlled insulin secretion, patients are at risk of hypoglycemia and many patients develop severe vascular complications such as myocardial infarction or stroke.

Transplantation of a healthy pancreas or pancreatic beta cells that synthesize insulin may represent the best treatment option. Unfortunately, the availability of donor organs falls far short of requirements. Over the course of the last several years, fewer than 200 pancreas transplantations have been carried out. “Pigs represent a possible alternative source, because glucose metabolism in this species is very similar to that in human beings,” Professor Seissler points out.

Pig insulin differs from its counterpart in humans at only a single amino acid, and has been used successfully in the treatment of diabetic patients for decades. However, pig cells inevitably provoke an immune reaction leading to the destruction of the transplanted tissue. One way of avoiding this difficulty is to encapsulate the foreign tissue in a biologically inert material that is permeable to insulin but not to cells of the immune system. However, the drawback of this approach is the restricted supply of oxygen and essential nutrients to the transplanted cells, thereby reducing its lifespan.

Wolf and his team chose a different route. For the first time they generated genetically modified pigs that express the protein LEA29Y specifically in beta cells. LEA29Y effectively inhibits the activation of a class of immune cells that are required to initiate a rejection reaction. The researchers then transplanted these cells into a diabetic mouse strain that has a humanized immune system. Seissler’s group showed that these mice were able to restore glucose metabolism and were protected form human-anti-pig rejection. As Wolf is quick to point out, “It is not yet clear whether this will also work in humans. However, we will now attempt to validate the effects of this very promising approach using beta-cells expressing immune modulators in other transplantation models.” suwe

Type 1 Diabetes - Treatment Overview

Treatment for adults

Type 1 diabetes requires lifelong treatment to keep blood sugar levels within a target range. Treatment includes:

- Taking several insulin injections every day or using an insulin pump.
- Monitoring blood sugar levels several times a day using a home blood sugar meter.
- Eating a healthful diet that spreads carbohydrate throughout the day, to prevent high blood sugar levels after meals.
- Regular physical activity or exercise, because exercise helps the body to use insulin more efficiently. Exercise may also lower your risk for heart and blood vessel disease.
- Regular medical checkups to monitor and adjust treatment as needed. Screening tests and exams need to be done regularly to watch for signs of complications, such as eye, kidney, heart, blood vessel, and nerve diseases.
- Not smoking.
- Not drinking alcohol if the person is at risk for periods of low blood sugar.

A regular daily schedule makes managing blood sugar levels easier. Blood sugars are easier to predict and control when mealtimes, amounts of food, and exercise are similar every day.


Publication:

„Xenografted Islet Cell Clusters From INSLEA29Y Transgenic Pigs Rescue Diabetes and Prevent Immune Rejection in Humanized Mice”
Nikolai Klymiuk, Lelia van Buerck, Andrea Bahr, Monika Offers, Barbara Kessler, Annegret Wuensch, Mayuko Kurome, Michael Thormann, Katharina Lochner, Hiroshi Nagashima, Nadja Herbach, Rudiger Wanke, Jochen Seissler, and Eckhard Wolf

Diabetes online, 20. April 2012

###

Contact:
Prof. Dr. Eckhard Wolf
Chair of Molecular Animal Genetics and Biotechnology
Genzentrum, LMU Munich
Email: .(JavaScript must be enabled to view this email address)

Prof. Dr. Jochen Seissler
Diabetes Center
Medizinische Klinik und Poliklinik IV – Campus Innenstadt
Email: .(JavaScript must be enabled to view this email address)

Provided by ArmMed Media